Custom cover image
Custom cover image

Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models

By: Material type: ArticleArticleDescription: 377-388 pISSN:
  • 0017-9310
Subject(s): Online resources: In: International Journal of Heat and Mass TransferSummary: The laminar and turbulent natural-convection flow in a two-dimensional square cavity heated from the vertical side is numerically calculated up to a Rayleigh number of 1014 for air and up to 1015 for water. Three different turbulence models are compared: the standard k-ε model with logarithmic wall functions and the low-Reynolds-number models of Chien, and Jones and Launder. The position of the laminar-turbulent transition in the vertical boundary layer strongly depends on the turbulence model used. Moreover, multiple solutions for the transition position can occur for a fixed Rayleigh number at the same numerical grid. The thermal stratification in the core of the cavity breaks up when the flow becomes turbulent. Comparison of the averaged wall-heat transfer with experiments for the hot vertical plate and for tall vertical cavities shows that the standard k-ε model gives a too high prediction, whereas the low-Reynolds-number models are reasonably close to the experiment.
Holdings
Item type Current library Call number Vol info Status Date due Barcode
Articles Articles Periodical Section Vol.34, No.2(February 1991) Available

The laminar and turbulent natural-convection flow in a two-dimensional square cavity heated from the vertical side is numerically calculated up to a Rayleigh number of 1014 for air and up to 1015 for water. Three different turbulence models are compared: the standard k-ε model with logarithmic wall functions and the low-Reynolds-number models of Chien, and Jones and Launder. The position of the laminar-turbulent transition in the vertical boundary layer strongly depends on the turbulence model used. Moreover, multiple solutions for the transition position can occur for a fixed Rayleigh number at the same numerical grid. The thermal stratification in the core of the cavity breaks up when the flow becomes turbulent. Comparison of the averaged wall-heat transfer with experiments for the hot vertical plate and for tall vertical cavities shows that the standard k-ε model gives a too high prediction, whereas the low-Reynolds-number models are reasonably close to the experiment.