Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models
Material type: ArticleDescription: 377-388 pISSN:- 0017-9310
Item type | Current library | Call number | Vol info | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Articles | Periodical Section | Vol.34, No.2(February 1991) | Available |
The laminar and turbulent natural-convection flow in a two-dimensional square cavity heated from the vertical side is numerically calculated up to a Rayleigh number of 1014 for air and up to 1015 for water. Three different turbulence models are compared: the standard k-ε model with logarithmic wall functions and the low-Reynolds-number models of Chien, and Jones and Launder. The position of the laminar-turbulent transition in the vertical boundary layer strongly depends on the turbulence model used. Moreover, multiple solutions for the transition position can occur for a fixed Rayleigh number at the same numerical grid. The thermal stratification in the core of the cavity breaks up when the flow becomes turbulent. Comparison of the averaged wall-heat transfer with experiments for the hot vertical plate and for tall vertical cavities shows that the standard k-ε model gives a too high prediction, whereas the low-Reynolds-number models are reasonably close to the experiment.