Custom cover image
Custom cover image

A Real Time Soft Shadow Volume Algorithm (PhD Thesis)

By: Material type: TextTextLanguage: English Publication details: Goteborg, Sweden : Chalmers University of Technology Department of Computer Engineering School of Computer Science and Engineering,, c2003Description: IX, 136 p. : illISBN:
  • 9172913339
Subject(s): DDC classification:
  • 005.10378242 ASS
Online resources: Summary: Abstract: Rendering of shadows is a very important ingredient in three-dimensional graphics since they increase the level of realism and provide cues to spatial relationships. Area or volumetric light sources give rise to so called soft shadows, i.e., there is a smooth transition from no shadow to full shadow. For hard shadows, which are generated by point light sources, the transition is abrupt. Since all real light sources occupy an area or volume, soft shadows are more realistic than hard shadows. Fast rendering of soft shadows, preferably in real time, has been a subject for research for decades, but so far this has mostly been an unsolved problem. Therefore, this thesis, which is based on five papers, focuses on how to achieve real-time rendering of soft shadows. The first four papers constitute the foundation and evolution of a new algorithm, called the soft shadow volume algorithm, and the fifth paper provides an essential proof for correctness and generality of this and some previous shadow algorithms. The algorithm augments and extends the well-known shadow volume algorithm for hard shadows. Two passes are used, where the first pass consist of the classic shadow volume algorithm to generate the hard shadows (umbra). The second pass compensates to provide the softness (penumbra). This is done by generating penumbra wedges and rasterizing them using a custom pixel shader that for each rasterized pixel projects the hard shadow quadrilaterals onto the light source and computes the covered area. A result of the thesis is an algorithm capable of real-time soft shadows that utilizes programmable graphics hardware. The algorithm produce high-quality shadows for area light sources and volumetric light sources. It also handles textured light sources, which currently is a very rare capability among real-time soft shadow algorithms. Even video textures are allowed as light sources.
Holdings
Item type Current library Shelving location Call number Status Date due Barcode
Reference Collection Reference Collection Government Document Section Govt Publication Section 005.10378242 ASS Available 66153

Abstract:
Rendering of shadows is a very important ingredient in three-dimensional graphics since they increase the level of realism and provide cues to spatial relationships. Area or volumetric light sources give rise to so called soft shadows, i.e., there is a smooth transition from no shadow to full shadow. For hard shadows, which are generated by point light sources, the transition is abrupt. Since all real light sources occupy an area or volume, soft shadows are more realistic than hard shadows. Fast rendering of soft shadows, preferably in real time, has been a subject for research for decades, but so far this has mostly been an unsolved problem.

Therefore, this thesis, which is based on five papers, focuses on how to achieve real-time rendering of soft shadows. The first four papers constitute the foundation and evolution of a new algorithm, called the soft shadow volume algorithm, and the fifth paper provides an essential proof for correctness and generality of this and some previous shadow algorithms.

The algorithm augments and extends the well-known shadow volume algorithm for hard shadows. Two passes are used, where the first pass consist of the classic shadow volume algorithm to generate the hard shadows (umbra). The second pass compensates to provide the softness (penumbra). This is done by generating penumbra wedges and rasterizing them using a custom pixel shader that for each rasterized pixel projects the hard shadow quadrilaterals onto the light source and computes the covered area.

A result of the thesis is an algorithm capable of real-time soft shadows that utilizes programmable graphics hardware. The algorithm produce high-quality shadows for area light sources and volumetric light sources. It also handles textured light sources, which currently is a very rare capability among real-time soft shadow algorithms. Even video textures are allowed as light sources.

Visit counter For Websites

Copyright © 
Engr Abul Kalam Library, NEDUET, 2024